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Introduction. Near the conclusion of our get-acquainted lunch (20 January 2012)
I asked Maximilian Schlosshauer—author of Decoherence & the Quantum-to-
Classical Transition ()—what he was working on “now that decoherence is
more or less behind you.” “Quantum information” was his response: “What
can be said about how quantum information is redistributed when two systems
interact.” Upon my return to my office I consulted Google, was alerted to the
fact that quite a number of research centers devoted to that broad topic have
in recent years sprung up around the world. One of those is the Centre for
Quantum Information & Foundations,1 which exists within the Department of
AppliedMathematics &Theoretical Physics (DAMTP) atCambridge University,
where I was linked to a website that lists the publications of one Jonathan
Oppenhiem,2 a prolific young Royal Society Research Fellow. The paper that
happened to catch my eye was J. Oppenheim & B. Reznik, “A probabilistic
and information theoretic interpretation of quantum evolutions.”3

I read with initial disbelief the text which led to their equation (2): “It is
known that for any N there exists a [set of N2 trace-wise orthogonal unitary
matrices Uα such that any unitary U can be developed

U =
N2∑

α=1

cα Uα

with complex amplitudes given by cα = 1
N tr(U+

α Uα)].” I was aware that, given
any linearly independent N2-member set of hermitian matrices (or, indeed, of
any N × N matrices, whether hermitian or not) one can, by a Gram-Schmidt
orthogonalization procedure,4 construct trace-wise orthogonal hermitian

1 http://www.qi.damtp.cam.ac.uk/
2 http://www.damtp.cam.ac.uk/user/jono/
3 Phys. Rev. A71, 022312 (2004), on line at arXiv:quant-ph/0309110.
4 For details see my “Trace-wise Orthogonal Matrices 1” (a Mathematica

notebook dated 1 February 2012).
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matrices Hα that permit one to write

H =
N2∑

α=1

cα Hα with cα = tr(Hα H)

But while the space of hermitian matrices is additively closed, the space of
unitary matrices is multiplicatively closed; real linear combinations of hermitian
matrices are invariably hermitian, but sums of unitary matrices are typically
not unitary. Whence the scepticism with which I read the casual claim on
which Oppenheim and Reznik base their paper. My scepticism was misplaced.
For—as belatedly occurred to me—I had encountered and made essential use
of tracewise-unitary bases already nearly sixty years ago.

Oppenheim cites a paper by Reinhard Werner5, where Werner borrows
what he calls “the best known construction for unitary bases” from one of
his own recent papers,6 a construction that makes elegantly effective use of
both (complex) Hadamard matrices and Latin squares. But in his Appendix
Oppenheim sketches a more transparent alternative to Werner’s construction,
which he attributes to Schwinger.7 The Schwinger paper—one of a set of three
papers based upon quantum lectures he had been presenting at Harvard since
8—acknowledges descent from material that can be found in Chapter 4, §14
(“Quantum kinematics as an Abelian group of rotations) of Hermann Weyl’s
The Theory of Groups & Quantum Mechanics (1930). That passage in Weyl’s
classic (which in my own copy bears a tattered page marker) marks the first
appearance of the “Weyl correspondence,” which lies at the foundation of the
“phase space formulation of quantum mechanics”—a subject to which, as it
happens, Werner himself has made substantial contributions.9

Weyl’s unitary basis. At page 4 in Chapter 2 of my Advanced Quantum Topics
(2000) I introduce manifestly hermitian operators

E(α, β) = e
i
! (αp+β x )

and establish (by appeal to basic Campbell-Baker-Hausdorff theory and some
rudimentary Fourier analysis) that

1
h trE(α, β) = δ(α)δ(β)

5 “All teleportation and dense coding schemes,” arXiv:quant-ph/0003070v1,
17 Mar 2000. See especially §4 “Constructing bases of unitaries.”

6 K. G. H. Vollbrecht & R. F. Werner, “Why two qubits are special,” arXiv:
quant-ph/9910064v1 (14 Oct 1999).

7 J. Schwinger, “Unitary operator bases,” PNAS 46, 570 (1960).
8 The other papers in the series are “The algebra of microscopic

measurement,” PNAS 45, 1542 (1959) and “The geometry of quantum states,”
PNAS 46, 257 (1960). All are reproduced in Schwinger’s Quantum Kinematics
& Dynamics (1970). I acquired and gave close attention to Schwinger’s
unpublished class notes in ∼1958.

9 See the papers listed at http://www.itp.uni-hanover.de/∼werner/Werner
ByTopic.html#j6, which appeared between 1984 and 2004.
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from which it is shown to follow that the operators E(α, β) and E(α′, β ′) are
trace-wise orthogonal in the sense that

1
h tr{E(α′, β ′)E+(α, β)} = δ(α′ − α)δ(β ′ − β)

One is led thus to an operator analog of the Fourier integral theorem

A =
∫∫ {

1
h tr

[
A E+(α, β)

]}
E(α, β)dαdβ : all A

The details of how, by means of this fact, one gets from A = |ψ)(ψ| to the
Wigner distribution function Pψ(x, p) are interesting, but of no immediate
relevance.

Pauli’s unitary basis. The Pauli matrices

σ0 = I =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

are linearly independent, so span the vector space of real/complex 2×2 matrices.
They derive their special importance and utility from three circumstances:
• each of the σ-matrices is hermitian ;
• each of the σ-matrices is unitary ;
• the σ-matrices are trace -wise orthonormal :

1
2 tr

(
σiσj

)
= δij

From the latter circumstance it follows moreover that
• each of the σ-matrices (with the exception only of σ0) is traceless ;

Every 2 × 2 matrix can be developed

A =
3∑

k=0

akσk with ak = 1
2 tr

(
A σk

)

In particular, we have

σiσj =
3∑

k=0

cijkσk with cijk = 1
2 tr

(
σiσjσk

)

and might be surprised by the discovery that such sums invariably contain but
a single term, were we not already familiar with these famous statements:

σ2
1 = σ2

2 = σ2
3 = I

σ1σ2 = iσ3 = −σ2σ1

σ2σ3 = iσ1 = −σ3σ2

σ3σ1 = iσ2 = −σ1σ3

Equivalent to those statements are the following: if
A = (a0σ0 + a1σ1 + a2σ2 + a3σ3) = a0σ0 + aaa···σ
B = (b0σ0 + b1σ1 + b2σ2 + b3σ3) = b0σ0 + bbb···σ

then
A B = (a0b0 + aaa···bbb)σ0 + (a0bbb + b0aaa + iaaa × bbb)···σ
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which has this immediate consequence: if the “conjugate” of A is defined

AT = a0σ0 − aaa···σ

then
A AT = (a0a0 − aaa···aaa) I

gives
A –1 = 1

a0a0 − aaa···aaa AT

which on comparison with

A –1 = transposed matrix of cofactors
determinant

provides
det A = a0a0 − aaa···aaa

These results are structurally reminiscent of

(x + iy)–1 = 1
x2 + y2

(x − iy)

It is immediately evident that

A hermitian ⇐⇒ Pauli coordinates ak are all real

but the coordinate conditions that follow from and imply unitarity are not quite
so obvious. The unitarity condition A+ = A –1 can be written

ā0σ0 + āaa···σ = a0σ0− aaa···σ
a0a0 − aaa···aaa

Let the complex numbers ak be written in polar form ak = rkeiθk and write
a0a0 − aaa···aaa = De2iδ. We then require

e−iθ0 = +D–1e−2iδeiθ0

e−iθk = −D–1e−2iδeiθk : k = 1, 2, 3

The first equation supplies D = 1 and δ = θ0 while the kth equation supplies
θk = δ + π. So we have

a0 = r0e
iδ

ak = irkeiδ

where
a0a0 − aaa···aaa = (r2

0 + r2
1 + r2

2 + r2
3)e

2iδ = e2iδ

forces the real 4-vector {r0, r1, r2, r3} to be a unit vector. We conclude that
2 × 2 unitary matrices can, in the most general case, be described

U = eiδ{cos φ · σ0 + i sin φ · (λ1σ1 + λ2σ2 + λ3σ3)}
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where λλλ is a real unit 3-vector. One has detU = e2iδ, so U becomes unimodular
when δ ≡ 0 mod2π

In anticipation of things to come, we note that the Pauli matrices share
the property that only one element in each row/column is non-zero: they are,
in other words, what I will later call matrices of “shifted diagonal structure,”
of what Werner calls “of shift and multiply type.” Moreover, the non-zero
elements of each are (not, as will later seem more natural, square roots of unity
but) 4th roots of unity.

Dirac’s unitary basis. In  I looked closely to the “generalized Dirac algebra”
D that arises from the anticommutation relation

γµγν + γνγµ = 2gµν

where gµν is allowed to be any non-singular real symmetric matrix. That is
essentially a Clifford algebra of order 4, with a total of 24−1 = 15 basic elements
(apart from the identity). I concentrated then on developing the equivalence of
“similarity transformations within D” and “rotations within a 6-space endowed
with a certain induced metric Gij ,” and paid no attention to the “unitary basis”
aspects of the subject, of which I was then oblivious. Recently I revisited the
subject10 with those aspects specifically in mind. The remarks that follow draw
substantially upon that recent discussion.

Though I will occasionally allude in passing to the form that expressions
assume when the metric is unspecialized, I restrict my remarks to the Euclidean
case. One verifies by calculation that a set of matrices that satisfy

γiγj + γjγi = 2δij I

can be described
γ1 = σ3 ⊗ σ0

γ2 = σ2 ⊗ σ1

γ3 = σ2 ⊗ σ2

γ4 = σ2 ⊗ σ3

which when spelled out look like this:

γ1 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



 , γ2 =





0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0





γ3 =





0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



 , γ4 =





0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0





10 See “Trace-wise Orthogonal Matrices 4” (Mathematica notebook dated
17 February 2012) and also “Aspects of the theory of Clifford algebras”: notes
for a seminar prresented 27 March 1968 to the Reed College Math Club.
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Each of those matrices is unitary, so all products of γ-matrices are assuredly
unitary.

Working from statements that in the general theory read σµν = γµγν −gµν

and by γµγν + γνγµ = 2gµν entail σµν = −σνµ, we now introduce

σij = −σij = iγiγj

where the i-factors have been introduced to achieve trace -wise normality (see
below). Explicitly,

σ12 =





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



, σ13 =





0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0



, σ14 =





0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0





σ23 =





−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1



, σ24 =





0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0





σ34 =





0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0





Next we introduce what is sometimes called the “5th Dirac matrix” and in
general theory is constructed Γ = 1

4!ε
µνρσσµνσρσ but in the Euclidean case

(after abandonment of a factor of i2 = −1) becomes simply

Γ = γ1γ2γ3γ4 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0





Finally, we introduce matrices

λk = i Γγk =






− iγ2γ3γ4

+ iγ1γ3γ4

− iγ1γ2γ4

+ iγ1γ2γ3

where the i-factors serve the same objective as before. Explicitly

λ1 =





0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0



, λ2 =





0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0





λ3 =





0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0



, λ4 =





−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
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In previous work I have written

G = S I +
4∑

i=1

Viγi + 1
2

4∑

i,j=1

Tijσij +
4∑

j=1

Ajλj + PΓ

to describe the general element of the Dirac algebra D, where the coefficients
have been assigned names intended to reflect the physically significant
distinctions among Scalars, Vectors, Tensors, Axial vectors and Pseudoscalars.
But for present purposes I find it convenient to adopt a single-index notation

ε0 = I

ε1 = γ1

ε2 = γ2

ε3 = γ3

ε4 = γ4

ε5 = σ12

ε6 = σ13

ε7 = σ14

ε8 = σ23

ε9 = σ24

ε10 = σ34

ε11 = λ1

ε12 = λ2

ε13 = λ3

ε14 = λ4

ε15 = Γ

writing

G =
15∑

k=0

gkεk

With the assistance of Mathematica we quickly establish—in precise mimicry
of the situation encountered in the Pauli algebra—that
• each of the ε-matrices is hermitian ;
• each of the ε-matrices is unitary ;
• the ε-matrices are trace -wise orthonormal .

From the latter circumstance it follows moreover that
• each of the ε-matrices (with the exception only of ε0) is traceless ;

The ε-matrices are linearly independent, and equal in number to the number
of elements in a 4× 4 matrix, so span the space of such matrices, in which they
constitute a trace-wise orthonormal hermitian basis which is also a unitary
basis. Every such matrix can be developed

A =
15∑

k=0

akεk with ak = 1
4 tr

(
A εk

)

In particular, we have

εiεj =
15∑

k=0

cijkεk with cijk = 1
4 tr

(
εiεjεk

)

From (i ) the fact that
every ε is of the form γα1

1 γα2
2 γα3

3 γα4
4 with all α ∈ {0, 1}

and (ii ) the fact that γiγj + γjγi = 2δij I can be used to simplify products of
ε-matrices (return them to single-ε form) it follows readily that for given i and j
only one of the cijk is non-zero.

It follows immediately from the hermiticity of the ε-matrices that
A hermitian ⇐⇒ Dirac coordinates ak are all real
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but the detailed significance of the coordinate conditions that follow from and
imply unitarity—which can be phrased

āk = 1
4 tr

(
A –1εk

)

—is far from obvious. Numerical evidence (look to the Dirac coordinates {xk}
of a randomly constructed unitary matrix X) indicates that

A unitary =⇒ Dirac coordinate vector has unit norm:
15∑

k=0

ākak = 1 (1)

but that the converse is not true. It is in an (alas! unsuccessful) effort to clarify
the situation that I look now to the inversion problem, as it arises within the
Dirac algebra D.11

We introduce now “conjugation” operations of two flavors:

A = a0ε0 +
4∑

i=1

aiεi +
10∑

i=5

ajεj +
14∑

i=11

akεk + a15ε15

AT = a0ε0 −
4∑

i=1

aiεi −
10∑

i=5

ajεj +
14∑

i=11

akεk + a15ε15

At = a0ε0 +
4∑

i=1

aiεi +
10∑

i=5

ajεj −
14∑

i=11

akεk − a15ε15

of which the first involves negation of the γ and σ terms, the second involves
negation of the λ and Γ terms. Looking with Mathematica’s assistance to the
development of AAT we find that the coordinates

1
4 tr

(
AATεk

)
= 0 : k = 1, . . . , 10

Looking next to

AAT(AAT)t =
15∑

k=0

1
4 tr

{
AAT(AAT)tεk

}
εk ≡

15∑

k=0

ckεk

we find that
ck = 0 : k )= 0

giving

AAT(AAT)t = c0 I =⇒ A –1 =
AT(AAT)t

c0

Evidently the matrix in the numerator (which is cubic in the coordinates of A)
provides a factored description of the transposed matrix of cofactors, while the

11 Here I borrow from my  notes, where I worked very carefully/patiently
on large sheets of paper, in {S, V, T, A, P} notation, which for this purpose offers
tensor-theoretic advantages.
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denominator (which is quartic in the coordinates of A) provides

c0 = det A

Detailed {S, V, T, V, P}-descriptions of numerator & denominator are developed
in the  notes, but are too complicated to merit transcription here.12 The
unitarity condition can now be written

āk = 1
4 tr

{
AT(AAT)t

c0

εk

}

which is, however, not very informative. In particular, it provides no insight
into the origin of (1). We do, however, find computationally that if we take A
to be a randomly constructed numerical unitary then the preceding equation is
correct, and moreover that

c0 = ei(phase angle)

We note finally that every ε-matrix is of “shifted diagonal form”

εk = (permutation matrix)k · (diagonal matrix)k

and that the elements of the diagonal factor are in every instance (once again,
as in the Pauli algebra) 4th roots of unity.

Recapitulation, and a motivational look ahead. The Pauli and Dirac algebras are
Clifford algebras of orders 2 and 4. From the generators {ε1, ε2, . . . , εn} of the
Clifford algebra Cn—because they are required to satisfy the anticommutation
relation εiεj + εjεi = 2δij—one can construct only N = 2n essentially distinct
products, which we may take to have the form εα1

1 εα2
2 · · · εαn

n : α ∈ {0, 1}.
When n is even (n = 2ν) we have N = 2ν × 2ν , which is the number of
elements in a 2ν × 2ν-dimensional matrix. In such cases we may expect to be
able to construct 2ν ×2ν-dimensional matrix representations {ε0, ε2, . . . , εN−1}
of the base elements of Cn. We might expect, moreover, to be able to construct
those matrices from ν-fold Kronecker products of Pauli matrices, and therefore
to be in position to extract their properties relatively painlessly from those
of the Pauli matrices. Specifically, we might expect to be able to arrange
for the elements of {ε0, ε2, . . . , εN−1} to be hermitian, unitary, and trace-wise
orthonormal. Google reports the existence of a sizeable literature pertaining
to “higher-dimensional Dirac matrices.”13 I do not pursue this subject because
it would appear to hold promise of providing unitary bases applicable only to
matrices whose dimension is a power of 2. The unitary bases constructed by
Schwinger, Werner and Oppenheim—to which I now turn—suffer from no such
limitation.

12 They are spelled out in “Transformational principles latent in the theory
of Clifford algebras” (October, 2003).

13 See, for example, http://en.wikipedia.org/wiki/Weyl-Brauer–matrices.
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Schwinger’s unitary basis. Unitary operators on Vn send orthonormal frames
to orthonormal frames. Let {|ak)} and {|bk)} be two such frames in Vn, and
define

Uab =
∑

k

|ak)(bk|

Then
Uab|bi) = |ai) : all i

Obviously Uab
+ = Uba , Uab Ubc = Uac , Uab A Uba = (trA) I . Julian Schwinger,

in “Unitary operator bases,” PNAS 46, 570 (1960), discusses various aspects
of such operators, drawing motivation it would appear mainly from previous
papers in the same series.14 I look here only to the material of immediate
relevance.

Let the elements of the “home frame” in Vn be denoted

|0) =





1
0
0
...
0




, |1) =





0
1
0
...
0




, . . . , |n − 1) =





0
0
0
...
1





where the indices run 0, 1, . . . , n−1 in order to facilitate the modular arithmetic
that will soon come into play. Schwinger looks to the unitary matrix

P =





0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0





that sends the home frame into the frame in which the indices have been
cyclically incremented:

P |k) = |k − 1 mod n)

P is a permutation matrix, clearly unitary in view of its frame −→ frame action.
It is clear also that

Pn = I

14 The others are “The algebra of microscopic measurement,” PNAS 45,
1542 (1959) and “The geometry of quantum states,” PNAS 46, 257 (1960).
Those papers provide the first published account of material that Schwinger
had been presenting in his quantum mechanics classes at Harvard, beginning in
about 1951. The material was presented at the Les Houches Summer School in
1955, and is reproduced in Chapters I and II of his Quantum Kinematics and
Dynamics (1970).
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so by the “backward Hamilton-Jacobi theorem” the characteristic equation of
P reads ωn = 1. The eigenvalues of P are therefore nth roots of unity:

{ω0, ω1, ω2, . . . , ωn−1} with ω = ei2π/n

The characteristic equation of an n × n matrix X can in the general case be
written

xn − xn−1 trX + · · · + (−1)n detX = 0

which in the present instance informs us that

P is traceless: trP = 0

(which is anyway obvious) and that detP = −(−1)n:15

The rotation matrix P is proper/improper according as n is odd/even

The normalized eigenvectors of P are now immediately evident: they are

|u0) = 1√
n





1
1
1
...
1




, |u1) = 1√

n





1
ω
ω2

...
ωn−1




, |u2) = 1√

n





1
ω2

ω4

...
ω(n−1)2




, . . .

|uk) = 1√
n





1
ωk

ω2k

ω3k

...
ω(n−1)k





where all exponents are to be read “mod n”. In short,

|uk) = 1√
n

n−1∑

j=0

ω jkmodn|j)

Schwinger directs our attention next to the unitary matrix Q that achieves
(reversed) cyclic permutation within the {|u)}-frame:

15 This follows also from

detP = product of eigenvalues = ei(n−1)π
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Q =





1 0 0 0 . . . 0
0 ω 0 0 . . . 0
0 0 ω2 0 . . . 0
0 0 0 ω3 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . ωn−1




: Q |uk) = |uk+1modn)

The unitarity of Q is obvious (obvious also from its defining action). Again,

Qn = I

so Q has the same spectum as P (read the diagonal!) and possesses the same
trace and determinant:

trQ = sum of eigenvalues = 0

detQ = product of eigenvalues = ei(n−1)π = (−1)n−1

All products of P and Q matrices are unitary, in which connection it is
important to notice that P and Q fail to commute: by quick calculation

P Q = ωQ P (2.1)

from which it follows that

Pµ Qν = ωµν mod n Qν Pµ (2.2)

Schwinger remarks in passing that

Pµ Qν = ωµν mod n Qν Pµ ⇐⇒ Q−µ Pν = ωµν mod n Pν Q−µ

establishes the sense in which P and Q are “complimentary”: all statements
deduced from (2.1) remain valid under the substitutional transformation

P → Q Q → P –1

An equation of precisely the form (2.1) appears at the beginning of and is
central to Weyl’s discussion of “Quantum Kinematics.”16

Following Schwinger, we look now to the n2-member population of n × n
unitary matrices

Uµν = Pµ Qν : µ, ν ∈ {0, 1, . . . , n − 1}

which we will show to be trace-wise orthonormal:
1
n tr(Uµν

+
Uρσ) = δµρδνσ ≡ δµν,ρσ

To that end, we insert
16 See again the passage cited previously in his The Theory of Groups and

Quantum Mechanics (1930). Recall also from Campbell-Baker-Hausdorff theory
(See Chapter 0, page 31 in my Advanced Quantum Topics (2000)) that if
operators A and B commute with their commutator then

eA eB = ω eB eA with ω = e
1
2 [A ,B ]

This and a couple of closely related identites play critically important roles in
the development and applications of the Weyl Correspondence.
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Pµ =
n−1∑

i=0

|i)(i + µ mod n|

Qν =
n−1∑

j=0

ωνj |j)(j|

into

1
n tr(U+

µν Uρσ) = 1
n

n−1∑

r=0

(r|Q−ν Pρ−µ Qσ|r)

to obtain

= 1
n

n−1∑

r=0

n−1∑

i,j,k,l=0

(r|j)(j|i)(i − µ mod n|k)

(k + ρ mod n|l)(l|r) ω−νj+σl

= 1
n

n−1∑

r=0

n−1∑

k=0

(r − µ mod n|k)(k + ρ mod n|r) ωr(σ−ν)

= 1
n

n−1∑

r=0

n−1∑

k=0

(r − µ mod n|k)(k|r − ρ mod n) ωr(σ−ν)

= 1
n

n−1∑

r=0

δ(r−ρ mod n)(r−µ mod n) ωr(σ−ν)

= δµρ · 1
n

n−1∑

r=0

ωr(σ−ν)

= δµρδνσ ≡ δµρ,νσ

It follows in particular, by U00 = P0 Q0 = I , that

1
n trUρσ = δ0ρδ0σ

so all U -matrices are traceless, with the sole exception of U00 = I . They are,
moreover, complete in the sense that

n−1∑

µ,ν=0

U+
µν A Uµν = (n trA) I : all A
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as I demonstrate:

=
n−1∑

µ,ν=0

n−1∑

i,j,k,l=0

|i)(i|j + µ mod n)(j|A |k)(k + µ mod n|l)(l| ων(l−i)

= n
n−1∑

µ=0

n−1∑

i,j,k,l=0

|i)(i|j + µ mod n)(j|A |k)(k + µ mod n|l)(l| δil

= n
n−1∑

µ=0

n−1∑

i,j,k=0

|i)(i|j + µ mod n)(j|A |k)(k + µ mod n|i)(i|

= n
n−1∑

i,j,k=0

δjk|i)(j|A |k)(i| = (n trA) I

In the case A = I we recover the trivial statement

n−1∑

µ,ν=0

U+
µν Uµν =

n−1∑

µ,ν=0

I = n2 I

But though unitary, orthonormal, traceless and complete, the Schwinger
matrices Uµν are (contrast the situation in the Pauli and Dirac algebras)
—with the sole exception of U00—non-hermitian:

U+
µν = Q−ν P−µ = ω−µν P−µ Q−ν = ω−µν U (n−µ)(n−ν)

Finally, we by Uµν Uρσ = Pµ Qν Pρ Qσ = ω−νρ Pµ+ρ Qν+σ have the composition
rule

Uµν Uρσ =
n−1∑

κ,λ=0

cµνρσκλ Uκλ

cµνρσκλ = δκ,(µ+ρ mod n)δλ,(ν+σ mod n) ω−(νρ mod n)

where again only a single term actually contributes to the
∑

κ,λ. A similar
argument supplies

U+
µν Uρσ = Q−ν Pρ−µ Qσ = ων(ρ−µ) Pρ−µ Qσ−ν

= ων(ρ−µ) U (ρ−µ mod n)(σ−ν mod n)

which, if we had 1
n trUκλ = δ0κδ0λ already at our disposal, would supply an

alternative (and much simpler) proof of trace-wise orthonormality.
Recall that the Clifford algebra Cn springs from an n-member set of

anticommutative generators {ε1, ε2, . . . , εn}, each of which is a square root of I .
The Schwinger algebra derives much of its relative simplicity from the
circumstance that it springs from only two generators, which are nth roots
of I and which satisfy a similarly simple commutivity relation.



Schwinger’s basis in the case n = 2 15

It is partly to demonstrate that the material developed above is actually
much simpler than at first sight strikes the eye (and partly to pose what I call the
“unitarity problem”) that I look now to the specifics of some low-dimensional
cases.

Schwinger’s basis in the case n = 2. Here

P =
(

0 1
1 0

)

which has eigenvalues {ω0, ω1} = {1,−1} with ω = ei2π/2 = −1.17 Therefore

Q =
(

1 0
0 ω

)

and the Schwinger matrices become

U00 =
(

1 0
0 1

)
, U01 =

(
1 0
0 −1

)
, U10 =

(
0 1
1 0

)
, U11 =

(
0 −1
1 0

)

All (with the exception of U00) are manifestly traceless; they are readily shown
to be unitary and orthonormal

1
2 tr(U+

µν Uρσ) = δµρδνσ

and all except U11 are hermitian. When the latter is multiplied by i (which
does no damage to tracelessness, unitarity or orthonormality) the Schwinger
matrices become Pauli matrices:

U00 = σ0 , U01 = σ3 , U10 = σ1 , iU11 = σ2

Arbitrary real/complex 2 × 2 matrices A and B can be developed

A =
1∑

µ,ν=0

aµν Uµν =
(

a0,0 + a0,1 a1,0 − a1,1

a1,0 + a1,1 a0,0 − a0,1

)

B =
1∑

ρ,σ=0

bρσ Uρσ =
(

b0,0 + b0,1 b1,0 − b1,1

b1,0 + b1,1 b0,0 − b0,1

)

Their product C = A B becomes

C =
1∑

µ,ν=0

cµν Uµν

17 This, by the way, is the only case in which all of the eigenvalues of P are
real, and in which therefore all the Schwinger matrices turn out to be real.
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with
c00 = 1

2 tr(U+
00 A B) = a00b00 + a01b01 + a10b10 − a11b11

c01 = 1
2 tr(U+

01 A B) = a00b01 + a01b00 + a10b11 − a11b10

c10 = 1
2 tr(U+

10 A B) = a00b10 − a01b11 + a10b00 + a11b01

c11 = 1
2 tr(U+

11 A B) = a00b11 − a01b10 + a10b01 + a11b00

where one might alternatively have appealed to the Schwinger product rule. To
obtain the coordinates of B = A –1 we (with Mathematica’s assistance) solve
the system of equations {c00 = 1, c10 = c01 = c11 = 0} to obtain

b00 = + a00

a2
00 − a2

10 − a2
01 + a2

11

b01 = − a01

a2
00 − a2

10 − a2
01 + a2

11

b10 = − a10

a2
00 − a2

10 − a2
01 + a2

11

b11 = − a11

a2
00 − a2

10 − a2
01 + a2

11

where
a2
00 − a2

10 − a2
01 + a2

11 ≡ A = detA

Unitarity requires (recall that U+
11 = −U11)

b00 = + ā00 = +a00/A

b01 = + ā01 = −a01/A

b10 = + ā10 = −a10/A

b11 = − ā11 = −a11/A





=⇒ A = e2iα

so we have
a00 = r00e

iα

a01 = ir01e
iα

a10 = ir10e
iα

a11 = r11e
iα

where the numbers {r00, r10, r01, r11} are real. We have now in hand the
coordinate conditions that are necessary and sufficient for A to be unitary
(or, for that matter, unimodular: set α = 0), and are in position to write

detA = a2
00 − a2

10 − a2
01 + a2

11 = (r2
00 + r2

10 + r2
01 + r2

11)e
2iα

= e2iα =⇒ (r2
00 + r2

10 + r2
01 + r2

11) = 1

which can be phrased this way:

A unitary =⇒
1∑

µ,ν=0

āµνaµν = 1

We might (with misguided optimism) expect to be able—in principle—to argue
similarly to a similar conclusion when n is arbitrary. But as will emerge, the
computational details rapidly become overwhelming: it becomes clear that to
carry out such a program a powerful new idea will be required.



Schwinger basis in the case n = 3 17

Schwinger basis in the case n = 3. The eigenvalues of

P =




0 1 0
0 0 1
1 0 0





are {1, ω, ω2} with ω = ei 2π
3 , so

Q =




1 0 0
0 ω 0
0 0 ω2





and the Schwinger matrices Uµν = Pµ Qν : µ, ν ∈ {0, 1, 2} become

U00 =




1 0 0
0 1 0
0 0 1



, U01 =




1 0 0
0 ω 0
0 0 ω2



, U02 =




1 0 0
0 ω2 0
0 0 ω





U10 =




0 1 0
0 0 1
1 0 0



, U11 =




0 ω 0
0 0 ω2

1 0 0



, U12 =




0 ω2 0
0 0 ω
1 0 0





U20 =




0 0 1
1 0 0
0 1 0



, U21 =




0 0 ω2

1 0 0
0 ω 0



, U22 =




0 0 ω
1 0 0
0 ω2 0





To say the same thing another way,

A =
2∑

µ,ν=0

aµν Uµν

=




(a00 + a01 + a02) (a10 + ωa11 + ω2a12) (a20 + ω2a21 + ωa22)
(a20 + a21 + a22) (a00 + ωa01 + ω2a02) (a10 + ω2a11 + ωa12)
(a10 + a11 + a12) (a20 + ωa21 + ω2a22) (a00 + ω2a01 + ωa02)





Again, unitarity, tracelessness and trace-wise orthonormality—in the sense

1
3 tr(U+

µν Uρσ) = δµρδνσ

—are either obvious or readily verified. But now all of the Uµν-matrices, with
the sole exception of U00, are non-hermitian:

U+
00 = U00 U+

01 = U02 U+
02 = U01

U+
10 = U20 U+

11 = ω2 U22 U+
12 = ωU21

U+
20 = U10 U+

21 = ωU12 U+
22 = ω2 U11
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so (noting that ω̄ = ω2) we have

A+=




(ā00 + ā01 + ā02) (ā20 + ā21 + ā22) (ā10 + ā11 + ā12)
(ā10 +ω2ā11 + ωā12) (ā00 +ω2ā01 + ωā02) (ā20 +ω2ā21 + ωā22)
(ā20 + ωā21 +ω2ā22) (ā10 + ωā11 +ω2ā12) (ā00 + ωā01 +ω2ā02)





Using Schwinger’s product rule to evaluate (with Mathematica’s assistance) the
coefficients in

A B ≡ C =
2∑

κ,λ=0

cκλ Uκλ

we are led quickly to results which, however, it seems pointless to spell out:
each cκλ is a sum a nine bilinear terms, with occasional terms decorated with
powers of ω. For example, we find

c00 = a00b00 + a02b01 + a01b02 + a20b10 + ωa22b11

+ ω2a21b12 + a10b20 + ω2a12b21 + ωa11b22

c01 = a01b00 + a00b01 + a02b02 + ω2a21b10 + a20b11

+ ωa22b12 + ωa11b20 + a10b21 + ω2a12b22

...

But when I attempted to solve the inversion problem by our former method
—when I asked Mathematica to solve the symbolic system of nine equations in
nine variables bρσ that results from setting {c00 = 1, c01 = c02 = · · · = c22 = 0}
—my computer balked (ran out of memory and shut down). So I attempted to
attack the inversion problem by another, more circumspect method:

Many years ago I established, and have over the years often made use of
the fact,18 that if Tk = trAk,

Q0 = 1
Q1 = T1

Q2 = T 2
1 − T2

Q3 = T 3
1 − 3T1T2 + 2T3

...

and (in the 3-dimensional case)

p0 = + 1
3!Q3

p1 = − 1
2!Q2

p2 = + 1
1!Q1

p3 = −1

18 See “A mathematical note: Algorithm for the efficient evaluation of the
trace of the inverse of a matrix” (1996).
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then the denominator/numerator in

A –1 = transposed matrix of cofactors
detA

admit of trace-wise description as follows:

detA = 1
6 (T 3

1 − 3T1T2 + 2T3)

and

transposed matrix of cofactors = −(p1I + p2 A − A2)

= A2 − T1A + 1
2 (T 2

1 − T2)I

=
[
A − 1

2

(
T1 +

√
2T2 − T1T1

)
I
][

A − 1
2

(
T1 −

√
2T2 − T1T1

)
I
]

These results19—despite their unfamiliar appearance—are found to pass
numerical tests. Notice that we have once again managed to factor the
numerator (the transposed matrix of cofactors), but that the factors—which
are, in an obvious formal sense, “conjugates” of one another—now contain
surds, which in the circumstances presented by the Pauli and Dirac algebras
they did not.20

The preceding solution of the inversion problem imposes no limitation on
the manner in which we elect to present the 3×3 matrix in question; we might,
in paticular, elect to write either of the following

A =




A11 A12 A13

A21 A22 A23

A31 A32 A33



 =
2∑

µ,ν=0

aµν Uµν

But in either case

A · detA =
[
A − 1

2

(
T1 +

√
2T2 − T1T1

)
I
][

A − 1
2

(
T1 −

√
2T2 − T1T1

)
I
]

is an uninformative quadratic mess that provides no insight into the conditions
that unitarity

A · detA = A+

imposes on the elements (or Schwinger coordinates) of A .

19 In the 2-dimensional case we find

detA = 1
2 (T 2

1 − T2)
transposed matrix of cofactors = T1 I − A

When the matrix is presented in Schwinger-expanded form we are led efficiently
back again to the inversion formula obtained in the preceding section.

20 When the dimension n ≥ 5 we might expect—by the “insolubility of the
quintic”—the analogs of those surds to be generally (in the absence of special
circumstances) undescribable!
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It may be of interest to note that if we possessed a set {R0, R1, R2, . . . , R8}
of 3×3 matrices that are (like Pauli and Dirac matrices) trace-wise orthonormal
in the “unadjointed” sense

1
3 tr(Ri Rj) = δij

and if R0 = I (which renders all the other R-matrices traceless) then it becomes
possible to write

A =
8∑

k=0

ak Rk with ak = 1
3 tr(Rk A)

⇓
trA = 3a0

trA2 = 3(a2
0 + a2

1 + · · · + a2
8)

which serve quite effectively to tidy-up the “quadratic mess,” but still do not
place us in position to formulate a sharp unitarity condition. R-matrices with
the stipulated properties can always be fabricated by means of a “trace-wise
Gram-Schmidt orthogonalization procedure,” but that is hardly worth the
effort, for we have by this point exhausted the merits of the approach: in higher
dimensions (or to evaluate the determinant even in this 3-dimensional case) one
has necessarily to confront the complications latent in the composition law

Ri Rj =
∑

ij

cijk Rk

Numerical evidence supports the claim that

A unitary =⇒
2∑

µ,ν=0

āµνaµν = 1

In the 2-dimensional case we found it fairly easy to proceed from a solution of
the inversion problem to a unitarity criterion that permitted one to supply an
algebraic proof of the validity of such a claim. I have belabored the
3-dimensional theory in that hope that I might enjoy similar success, and thus
be guided toward a proof that works for arbitrary dimension. But that goal
seems now to remain as unappoachably distant as ever.21 I have developed
an appreciation for why it was that Weyl/Schwinger/Werner were content to
ignore the issue.

Oppenheim’s contribution. It was, as I indicated at the outset, a remark by
Jonathan Oppenheim and his co-author that put me onto this subject. In

21 I am reminded that it was Hamilton’s prolonged effort to solve “the division
problem” that led him at length to the invention of quaternions.
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their text, Oppenheim & Reznik appear to attribute the unitary basis idea
to Reinhard Werner5,6, but in the Appendix of their paper3 they sketch a
method for constructing unitary bases that differs markedly from Werner’s, in
connection with which they mention a half-century old paper by Schwinger.7
Schwinger’s paper is diffuse, and I found I had to work to separate the material
relating specifically to basis construction from other ideas explored in that
somewhat opaque paper. I came at length to the realization that Oppenheim
and Reznik had done similar work, and that their unitary basis construction
procedure is borrowed directly from Schwinger. What I learned from Oppenheim
is how fundamentally simple the unitary basis idea is—a perception not easy
to garner from Schwinger, and certainly not from Werner.

Werner’s unitary bases. Werner restricts his attention to unitary matrices of
the form

U = (permutation matrix) · (unitary diagonal)

Pauli matrices are of this form, so are Dirac matrices, and so are the matrices
contemplated by Schwinger.

Permutation matrices have a 1 in each row/column, with all other elements
zero. Permutation matrices P are in all cases inverted by transposition: all
such matrices are therefore rotation matrices (real unitary matrices), proper or
improper according as the permutation they accomplish is even or odd.

Diagonal matrices Q are unitary if and only the elements on the principle
diagonal are of the form eiα.

Schwinger’s procedure is “rigid” in the sense that he assigns a specific
value to P (assumes P to describe a one-step cyclic advance) and distributes
the eigenvalues {ω0, ω1, . . . , ωn−1} of P along the principal diagonal of Q . It
does acquire some flexibility from the observation that where Schwinger writes

Uµν = Pµ Qν

the role assigned to P could be reassigned to any power p of P that does not
divide n, and the role of Q reassigned to any power q of Q that is similarly
constrained, but those adjustments serve merely to shuffle the labels worn by
the Uµν matrices. And of course, when all is said and done one could construct
alternative bases by means of unitary similarity transformations

Uµν −→ Unew
µν = S –1Uµν S

that preserve unitarity and all trace properties, but destroy the shifted diagonal
structure of the original matrices.

Werner matrices are defined

Wij ≡ ‖Wij,pq‖ = ‖Hip KroneckerDelta[q, Ljp]‖

where the Hip are elements of an n × n Hadamard matrix H and the Ljp

are elements of an n×n Latin square L. The Werner construction derives its
relatively greater flexibility from the circumstance that for n ≥ 4 the matrices H
and (especially) L can be selected from a rapidly expanding set of possibilities.
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Latin squares22 are square arrangements of symbols (call them 1, 2, . . . , n)
in which each symbol appears exactly once in each row and column:

(
1 2
2 1

)
,




1 2 3
2 3 1
3 1 2



,





1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1



,





1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1





Some (such as those shown above) can be read as group tables, but others
cannot; the following is the smallest example of a Latin square that can be
interpreted to refer not to a group but to a “quasi-group” (non-associative
group, or “loop”): 



1 2 3 4 5
2 4 1 5 3
3 5 4 2 1
4 1 5 3 2
5 3 2 1 4





But the latter serves Werner’s purpose just as well as the others. The literature
describes the criteria with respect to which Latin squares of the same dimension
become “equivalent/inequivalent.” The number of inequivalent Latin squares is
a very rapidly increasing function of dimension: at n = 23 it has become 283657,
and by n = 10 it has reportedly grown to 34817397894749939 ≈ 3.48 × 1016,
which affords Werner plenty of room in which to wiggle!

The theory of Hadamard matrices23 originates in a paper24 byJ.J.Sylvester,
and acquired its name from a paper published twenty-six years later by Jacques
Hadamard. Hadamard matrices are square matrices with all elements equal to
±1 and with the further property that all rows/columns are orthogonal, which
entails

H H T = nI
In the simplest instance one has

H2 =
(

1 1
1 −1

)

Sylvester himself contemplated matrices of progressively higher order

H4 = H2 ⊗ H2 =





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



, H8 = H2 ⊗ H4 , etc.

22 Consult http://en.wikipedia.org/wiki/Latin–square.
23 See http://en.wikipedia.org/wiki/Hadamard–matrix.
24 “Thoughts on inverse orthogonal matrices, simultaneous sign successions,

and tessellated pavements in two or more colors, with applications to Newton’s
rule, ornamental tile-work, and the theory of numbers,” Phil. Mag. 34 461–475,
(1867).
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Such matrices have dimension {2, 4, 8, 16, 32, 64, . . . , 2ν}. The still-unproven
Hadamard conjecture asserts that real Hadamard matrices exist in all
dimensions that are multiples of 4, which would fill in these gaps in Sylvester’s
list: {12,−, 20, 24, 28,−, 36, 40, 44, 48, 52, 56, 60,−, . . .}. As of 2008, the least
value of n for which Hadamard’s conjecture has not been confirmed is
n = 688 = 4× 172, and there were a total of thirteen such cases with n < 2000.
The real Hadamard matrices are (given the natural interpretation of
“equivalence” supplied by the literature) unique through n = 2, 4, 6, 12, but
5 inequivalent Hadamard matrices exist for n = 16, and millions are known for
n ≥ 32. This again provides Werner with plenty or room to wiggle, at least in
dimensions that are multiples of four.

Complex Hadamard matrices—which satisfy the complexified condition

H H+ = n I

—exist in all dimensions, including those that are not multiples of four. The
most important class of such matrices are those of “Butson type,”25 which in
n-dimensions possess the “Fourier structure”

Fn = ‖Fn,jk‖ with Fn,ij = ω(j−1)(k−1)

where ω = ei2π/n and i, j ∈ {1, 2, . . . , n}. Low-dimensional examples look like
this:

F2 =
(

1 1
1 ω

)
with ω = ei2π/2 = −1

F3 =




1 1 1
1 ω ω2

1 ω2 ω



 with ω = ei2π/3

F4 =





1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω



 with ω = ei2π/4 = i

I will not attempt to demonstrate the unitarity, tracelessness or trace-wise
orthonormality of Werner’s matrices Wij —the arguments are a bit intricate;
the Schwinger matrices Uµν serve all practical purposes, and for those such
demonstrations are already in hand—but will be content to look to specific
examples of Werner bases in some low-dimensional cases.

The Werner basis in the case n = 2. In this case the selection of H and L is not
optional. One has

H =
(

1 1
1 −1

)
and L =

(
1 2
2 1

)

25 See http://en.wikipedia.org/wiki/Butson-type–Hadamard–matrices. The
original reference is A. T. Butson, “Generalized Hadamard matrices,” Proc.
Amer. Math. Soc. 13, 894-898 (1962).
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Entrusting the computational labor to Mathematica, Werner’s construction
supplies

W11 =
(

1 0
0 1

)
, W12 =

(
0 1
1 0

)
, W21 =

(
1 0
0 −1

)
, W11 =

(
0 −1
1 0

)
,

which are identical (apart from labeling and order) to the matrices supplied in
the 2-dimensional case by Schwinger’s construction.

The Werner basis in the case n = 3. The selection of H and L is again not
optional. One has

H =




1 1 1
1 ω ω2

1 ω2 ω



 and L =




1 2 3
2 3 1
3 1 2





giving

W11 =




1 0 0
0 1 0
0 0 1



, W12 =




0 0 1
1 0 0
0 1 0



, W13 =




0 1 0
0 0 1
1 0 0





W21 =




1 0 0
0 ω 0
0 0 ω2



, W22 =




0 0 ω2

1 0 0
0 ω 0



, W23 =




0 ω 0
0 0 ω2

1 0 0





W31 =




1 0 0
0 ω2 0
0 0 ω



, W32 =




0 0 ω
1 0 0
0 ω2 0



, W33 =




0 ω2 0
0 0 ω
1 0 0





where now ω = ei2π/3. This is again identical to the population of unitary
matrices produced by Schwinger’s construction.

Werner bases in the case n = 4. This is case of least dimension in which we
confront inequivalent (but equally viable) options: we can select either of two
possible Hadamard matrices (one real, the other complex), and either of two
possible Latin squares. I look initially to the Werner matrices that result from
selecting

H =





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



 and L =





1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1





because the reality of HSylvester has this interesting consequence: it gives rise
to real-valued unitary matrices, which is to say: orthonormal rotation matrices.
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Mathematica supplies





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



,





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



,





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



,





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



,





1 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 ω



,





0 ω 0 0
1 0 0 0
0 0 0 ω
0 0 1 0



,





0 0 1 0
0 0 0 ω
1 0 0 0
0 ω 0 0



,





0 0 0 ω
0 0 1 0
0 ω 0 0
1 0 0 0



,





1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω



,





0 1 0 0
1 0 0 0
0 0 0 ω
0 0 ω 0



,





0 0 ω 0
0 0 0 ω
1 0 0 0
0 1 0 0



,





0 0 0 ω
0 0 ω 0
0 1 0 0
1 0 0 0



,





1 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 1



,





0 ω 0 0
1 0 0 0
0 0 0 1
0 0 ω 0



,





0 0 ω 0
0 0 0 1
1 0 0 0
0 ω 0 0



,





0 0 0 1
0 0 ω 0
0 ω 0 0
1 0 0 0





where ω = −1. Wij is found in the ith row and jth column of that display. If,
on the other hand, we set H = F4 (but retain the same L as before) we obtain





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3









0 ω 0 0
1 0 0 0
0 0 0 ω3

0 0 ω2 0









0 0 ω2 0
0 0 0 ω3

1 0 0 0
0 ω 0 0









0 0 0 ω3

0 0 ω2 0
0 ω 0 0
1 0 0 0









1 0 0 0
0 ω2 0 0
0 0 1 0
0 0 0 ω2









0 ω2 0 0
1 0 0 0
0 0 0 ω2

0 0 1 0









0 0 1 0
0 0 0 ω2

1 0 0 0
0 ω2 0 0









0 0 0 ω2

0 0 1 0
0 ω2 0 0
1 0 0 0









1 0 0 0
0 ω3 0 0
0 0 ω2 0
0 0 0 ω









0 ω3 0 0
1 0 0 0
0 0 0 ω
0 0 ω2 0









0 0 ω2 0
0 0 0 ω
1 0 0 0
0 ω3 0 0









0 0 0 ω
0 0 ω2 0
0 ω3 0 0
1 0 0 0





where now ω = i, ω2 = −1 and ω3 = −i. Note that the matrices in the first
row—unchanged from before—are real-valued, but so also are the matrices
in the third row. More interesting is the observation that the preceding list
is distinct from the list of Dirac matrices, which can be extablished by the
following simple consideration: the Dirac list contains four members—namely
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{γ1, γ2, γ3, γ4}—that square to I and anticommute. The Werner list (we are
informed by Mathematica) contains six members that square to the identity

W11 W11 = W12 W12 = W13 W13 = W14 W14 = W31 W31 = W33 W33 = I

from which it is possible to select two distinct anticommutative triples (namely
{W12, W31, W33} and {W14, W31, W33}) but it is not possible to select an
anticommutative quartet.26 The Werner list is distinct also from Schwinger’s
list of 4 × 4 unitaries, for—though there are some coincidences—the latter
contains six members (three each) of designs





0 0 0 •
• 0 0 0
0 • 0 0
0 0 • 0



 and





0 • 0 0
0 0 • 0
0 0 0 •
• 0 0 0





that are absent from Werner’s list. Nor does selection of the other one of the two
available Latin squares bring the Werner and Schwinger lists into agreement.

It is of interest to note finally that the dimensions n = 2ν of real Hadamard
matrices of Sylvester’s design—whence of real (and therefore rotational) Werner
bases—are precisely the dimensions of the state spaces that support the
quantum dynamics of ν qubits. Real Warner bases are, however, not that rare:
they (by the Hadamard conjecture) can be constructed whenever the dimension
is a multiple of four.

ADDENDUM: Randomly constructed unitary bases. The eigenvalues of a unitary
matrix U have the form eiαk , where the real-valued αk are the eigenvalues of
the of the hermitian eigenvalues of the generator of U . We have

26 Had the situation turned out otherwise I would have searched for a unitary
matrix S that by similarity transformation sends Werner −→ Dirac, since all
representations of the Dirac algebra are known to be similarity-equivalent.


